Truth suffers from too much analysis

Posts Tagged ‘Sherlock’

When You Have Eliminated the Impossible…

Posted by allzermalmer on March 20, 2013

Sherlock Holmes is written to have said “when you have eliminated the impossible, whatever remains, however improbable, must be the truth.”

The full quote is found in the book The Sign of Four: “You will not apply my precept,” he said, shaking his head. “How often have I said to you that when you have eliminated the impossible, whatever remains, however improbable, must be the truth? We know that he did not come through the door, the window, or the chimney. We also know that he could not have been concealed in the room, as there is no concealment possible. When, then, did he come?”

The method that Holmes is using is an Eliminative Method, or a form of Eliminative Inference. This form of reasoning has at least two forms of inference. They are the Disjunctive Syllogism and Modus Tollens.

Disjunctive Syllogism: Because at least one disjunct must be true, by knowing one is false we can infer that the other is true.
Premise 1: Either A or B
Premise 2: ~A
Conclusion: Therefore, B

Premise 1: Either they Came through the Door, or Came through the Window, or Came through the Chimney, or Came through the hole in the roof.
Premise 2: Didn’t come through the door and Didn’t come through the window and didn’t come through the chimney.
Conclusion:Therefore, they Came through the hole in the roof.

This is an eliminative inference. We have some possible solutions to the mystery that Holmes is investigating. Holmes has also made some observations that are inconsistent with some of those possible solutions. These observations contradict the possible solutions, and this makes them impossible. Holmes rejects some of the conjectured solutions and has now limited possible solutions that are still consistent with his observations.

Suppose Holmes were to list alternative hypothesis. Suppose that Holmes ordered them in preference, and those that he preferred the most were considered to be the most probable. For example: Come through the Window (65%) > Come through the Door (20%) > come through the Chimney (10%) > Came through the hole in the roof (5%).

Here are four alternative hypothesis, and each one of them is graded on their probability of being true and his preference going from most probable to improbable. Holmes collects some observations. Some of the hypothesis are inconsistent with the observations. The more probable hypothesis are eliminated by the observations collected. To hold to the observations collected and hypothesis that are inconsistent with those observations, would be equivalent to holding to what is impossible. The hypothesis are contradicted by the observations. No matter how probable the impossible is, it still isn’t possibly true. And once we have eliminated the impossible, whatever remains, however improbable, must be the truth.

Posted in Philosophy | Tagged: , , , , , , , , | Leave a Comment »