allzermalmer

Truth suffers from too much analysis

Posts Tagged ‘Deductive’

Fallacy of Evidentialism

Posted by allzermalmer on August 18, 2013

There are two philosophers, who are taken to be generally representative of Evidentialism. These two philosophers are David Hume and C.K. Clifford. These two philosophers have two quotes that are examplars of their Evidentialism thesis. They are, respectively, as follows.

“A wise man, therefore, proportions his belief to the evidence…when at last [a wise man] fixes his judgement, the evidence exceeds not what we properly call probability.” – David Hume in “Of Miracles” (Italics are Hume’s)

“We may believe what goes beyond our experience, only when it is inferred from that experience by the assumption that what we do not know is like what we know…It is wrong in all cases to believe on insufficient evidence” – W.K. Clifford in “The Ethics of Belief

Thomas Huxley,

Huxluy Evidence

Those quotes from these three writers are taken as representative of Evidentialism, and thus the Evidentialist Principle. The statements they make might appear to carry some validity & they might even seem to be sound.

However, Karl Popper holds that they are not valid. He also doesn’t hold that they are sound. They even contradict all empirical systems or all empirical propositions. They forbid us from ever believing or holding to any empirical system or empirical proposition, they forbid us from ever believing or holding to any scientific hypothesis or scientific proposition. But the problem of Induction applies to both the truth of this matter of fact assertion and the probability of the truth of this matter of fact assertion.

Both of the propositions contain signs of being based on Induction. Hume points out that a wise man will fix their judgements on a proposition when the evidence indicates that it is probable. Clifford points out that we may infer from experience what goes beyond our experience, but this is based on hypothesis that unknown is similar to the known.

Both of the propositions show that Evidentialism is founded on Induction, or inductive inferences.

Hume, supposedly, showed that it is logically impossible to infer the unknown from the known. It is logically impossible to derive the unknown from the known. Thus, Evidentialism is founded on a logical impossibility.

“The problem of the source of our knowledge has recently been restated as follows. If we make an assertion, we must justify it; but this means that we must be able to answer the following questions.

How do you know? What are the sources of your assertion?’ This, the empiricist holds, amounts in its turn to the question,

‘What observations (or memories of observations) underlie your assertion?’ I find this string of questions quite unsatisfactory.” – Karl Popper in “The Sources of Knowledge and Ignorance

Popper presents the Evidentialist Principle, in that quote, as saying that “If we make an assertion, we must justify it“. If you make an assertion, then you must justify it, or making an assertion implies must justify the assertion. You would have to answer one question, ‘How do you know? What are the sources of your assertion?’, and have to answer another question, ‘What observations (or memories of observations) underlie your assertion?’. 

As Popper points out, the Evidentialist Principle is an answer to The Problem of Source of Knowledge. So we may suppose that Evidentialism and Induction are to be based on the Source of a proposition or an empirical proposition. It seeks that the source of a proposition to be justified.

Criticizing or discrediting a proposition because of the source has some similarity to the Genetic Fallacy: “if the critic attempts to discredit or support a claim or an argument because of its origin (genesis) when such an appeal to origins is irrelevant.”

With the Genetic Fallacy, a proposition is being discredited, or supported, because it is “paying too much attention to the genesis of the idea rather than to the reasons offered for it”. The origin, or source, of the proposition is used to discredit, or support, the proposition.

Evidentialism would discredit a proposition because the source of the proposition is without justification.

We also find that David Hume presents an example of the questions that Popper finds to be unsatisfactory.

“All reasonings concerning matter of fact seem to be founded on the relation of cause and effect. By means of that relation alone we can go beyond the evidence of our memory and senses. If you were to ask a man, why he believes any matter of fact, which is absent; for instance, that his friend is in the country, or in France; he would give you a reason; and this reason would be some other fact; as a letter received from him, or the knowledge of his former resolutions and promises…All our reasonings concerning fact are of the same nature. And here it is constantly supposed that there is a connexion between the present fact and that which is inferred from it. Were there nothing to bind them together, the inference would be entirely precarious.

When it is asked, What is the nature of all our reasonings concerning matter of fact? the proper answer seems to be, that they are founded on the relation of cause and effect. When again it is asked, What is the foundation of all our reasonings and conclusions concerning that relation? it may be replied in one word, Experience. But if we still carry on our sifting humour, and ask, What is the foundation of all conclusions from experience? this implies a new question, which may be of more difficult solution and explication.” – David Hume in “Sceptical doubts concerning the operations of the understanding” (Italics are Hume’s)

David Hume himself goes down the line of questioning that Popper brings up. For example, suppose that some assertion is made like “all ravens are black”. This assertion is what Hume calls a Matter of Fact, i.e. Synthetic proposition or Contingent proposition. It is Possible that it is true that “all ravens are black” and it is possible that it isn’t true that “all ravens are black”. This starts a line of questioning once this assertion is presented.

Question: What is the nature of reasoning concerning that matter of fact?
Evidence: The assertion is founded on the relation of cause and effect.
Question: What is the foundation of reasoning and conclusion concerning that relation of cause and effect?
Evidence: The relation of cause and effect of that assertion is founded on Experience.

These two questions follow a basic form that Popper is bringing up, and the type of basic form that Popper finds unsuitable, or the type of basic form of Evidentialism that is unsuitable. The basic reason for this is because another question follows from the answer to the previous two questions.

Question: What is the foundation of that conclusion drawn from experience?

This new question is where the Problem of Induction arises, or what Popper calls The Logical Problem of Induction.

If all Ravens are Black then justified in the relation of cause and effect. If justified in the relation of cause and effect then justified by experience. If justified by experience then experience is justified by Induction. So if all ravens are black then justified by Induction. But, Induction isn’t justified. So assertion all ravens are black isn’t justified. Therefore, Evidentialism would make it so that the assertion all Ravens are Black isn’t justified. This applies to all matters of fact, and thus all empirical and scientific assertions.

“It is usual to call an inference ‘inductive’ if it passes from singular statements (sometimes called ‘particular’ statements), such as accounts of the results of observations or experiments, to universal statements, such as hypotheses or theories. Now it is far from obvious, from a logical point of view, that we are justified in inferring universal statements from singular ones, no matter how numerous; for any conclusions drawn in this way may always turn out to be false: no matter how many instances of white swans we may have observed, this does not justify the conclusion that all swans are white. The question whether inductive inferences are justified, or under what conditions, is known as the problem of induction.” – Karl Popper in “The Logic of Scientific Discovery” (Italics are Popper’s)

The Problem of Induction comes about because Induction relies on statement that is a matter of fact assertion, but this matter of fact assertion cannot, in principle, be inductively justified. So either all reasonings concerning matter of fact seem to be founded on experience or not all reasonings concerning matter of fact seem to be founded on experience.

This is a logical problem because either Induction relies on a statement that is either a contingent proposition or necessary proposition. We can call this the “Principle of Induction”. But the Principle of Induction can’t be a necessary proposition because the negation of the Principle of Induction is possible to be false. A necessary proposition can’t be possible to be false. So it is possible that Principle of Induction is true and it is possible that isn’t true that Principle of Induction is true. Therefore, the Principle of Induction is a contingent proposition.

Hume points out that matter of facts about dispositions and universal propositions are matters of facts. Thus dispositional propositions and universal propositions are contingent propositions. Dispositional propositions describe law-like behavior and universal propositions describe lawful behavior or law-like behavior. These would both be contingent propositions, and so we wouldn’t be justified, based on Induction, in asserting those dispositional propositions or universal propositions.

We wouldn’t be justified, based on Evidentialism, when it came to assertions about dispositional propositions or universal propositions. Science wouldn’t be justified, based on Evidentialism, when it came to assertions about dispositional propositions or universal propositions. But science is full of assertions about dispositional propositions and universal propositions. Therefore, science wouldn’t be justified in asserting dispositional propositions and universal propositions.

“[Hume] tried to show that any inductive inference- any reasoning from singular and observable cases (and their repeated occurrence) to anything like regularities or laws- must be invalid. Any such inference, he tried to show, could not even be approximately or partially valid. It could not even be a probable inference: it must, rather, be completely baseless, and must always remain so, however great the number of the observed instances might be. Thus he tried to show that we cannot validly reason from the known to the unknown, or from what has been experienced to what has not been experienced (and thus, for example, from the past to the future): no matter how often the sun has been observed regularly to rise and set, even the greatest number of observed instances does not constitute what I have called a positive reason for the regularity, or the law, of the sun’s rising and setting. Thus it can neither establish this law nor make it probable.” Karl Popper in “Realism and the Aim of Science” (Italics are Popper’s)

The assertion “all ravens are black” isn’t justified as true under Evidentialism and “all ravens are black” isn’t jusified as probably true under Evidentialism. Hume himself points out that the wise man doesn’t fixate his judgement on an assertion in which the evidence exceeds what we properly call probability. In other words, the Evidentialist doesn’t hold to assertions in which the evidence exceeds what we properly call probability. So Evidentialist only hold to assertion in which evidence shows it is true or probably true. So “all ravens are black” is only held by an Evidentialist if evidence shows it is true or at least probably true.

Popper presents a solution to the Problem of Induction, and thus treats assertions differently from Evidentialism. Popper rejects Induction, and thus rejects Evidentialism. The source of an assertion has nothing to do with either discrediting the truth of a proposition or supporting the truth of a proposition.

Matter of fact propositions, or scientific propositions, don’t discredit or support the source of an assertion. Science doesn’t support the truth of a proposition or support the probability of a proposition. It, basically, seeks to discredit the truth of a proposition. Science seeks to show that the proposition is false, not that the proposition is true or probably true. Science always seeks to discredit it’s proposition and not to support it’s propositions. So scientific propositions are, in principle, possible to show they are false and never show they are true or probably true. This includes both dispositional propositions and universal propositions.

In other words, Evidentialism seeks both positive justifications for assertion and negative justifications for assertion. Evidentialism would be based on “full decidability”. Falsifiability, or Falsification, seeks only negative justifications for assertions. Falsifiability would be based on “partial decidability” . These negative justifications, for Falsifiability, basically state that scientific assertion hasn’t been demonstrated false as of yet. This never indicates a positive justification for the assertion being true or probably true.

“The problem of induction arises from an apparent contradiction between the basic empiricist requirement (only experience can decide the truth or falsity of a scientific statement) and Hume’s insight into the logical impermissibility of inductive decision (there is no empirical justification of universal statements). This contradiction exists only if we assume that empirical statements must be empirically “fully decidable”, that is, that experience must be able to decide not only their falsity, but also their truth. The contradiction is resolved once “partially decidable” empirical statements are admitted: Universal empirical statements are empirically falsifiable, they can be defeated by experience.” – Karl Popper in “The Two Problems of The Theory of Knowledge” (Italics are Popper’s)

For Falsifiability, the source of an assertion is irrelevant when judging whether the assertion is either true or false, and the source of an assertion is irrelevant when judging whether justified in believing that assertion is true or probably true. The source of an assertion is irrelevant for the justification of the assertion. Would have to rely on Induction, and Induction isn’t justified itself. The only justification of an assertion, specifically an empirical assertion, is that it is possible to show that assertion is false. An empirical assertion has the possibility to be shown false, but it doesn’t have the possibility to be shown true (or probably true).

Science, thus, doesn’t care of the source of an assertion. Science is justified in believing, or holding to, an empirical proposition because that empirical proposition allows for the possibility that can be shown that it is false, but hasn’t been shown that it is false yet. For example, science would be justified in believing the empirical proposition that “all ravens are orange” if wasn’t for “some ravens are black”. It would be a negative justification, since don’t have another empirical proposition that contradicts it, or shows that it is false.

One of the basic mechanisms of Falsifiability is that works by deductive inference. Modus Tollens forms an example of deductive inference that Falsifiability uses. Given the conditional claim that the consequent is true if the antecedent is true, and given that the consequent is false, we can infer that the antecedent is also false.

If an empirical assertion is true implies another empirical assertion is true & the other empirical assertion is false, then original empirical assertion is false.

Principle of Modus Tollens:If all ravens are orange implies no ravens are not orange & some ravens are black, then not all ravens are orange. This is how the negative justification of empirical assertions works, which is deductive inference of modus tollens. It wouldn’t be possible for “not all ravens are orange” to be false. So it must be true.

The Principle of Modus Tollens is a necessary truth, which is different from the Principle of Induction. The Principle of Induction isn’t a necessary truth. It is possible that the Principle of Induction is false. So it might be true.

An assertion that is the conclusion of the Principle of Induction, or the assertion of a wise man that reviewed the Evidence, might be true. An assertion that is the conclusion of the Principle of Modus Tollens, or the assertion of a foolish man that never reviewed the Evidence, must be true.

The truth that the Principle of Modus Tollens always produces truth. It is similar to negative theology. It isn’t true that “all ravens are orange” & it isn’t true that “no ravens are not orange”. Each time saying what is true because true isn’t those false statements, since it is true that “not all ravens are black”.

The contradiction between “all ravens are orange” and “not all ravens are orange” are exclusive, they both can’t be true and no intermediary empirical propositions between them. If know that “all ravens are orange” is false then know that “not all ravens are orange” is true. All ravens are orange implied no ravens are not orange & some ravens are black. Therefore, it is necessarily true that not all ravens are orange. If Know that “not all ravens are orange” is true then “not all ravens are orange” is true. “Not all ravens are orange” is true.

Both the Principle of Modus Tollens are dealing with scientific propositions. The scientific propositions are possibly true or possibly false. If combine scientific propositions with the Principle of Induction, then scientific proposition infered might be true. If combine scientific propositions with Principle of Modus Tollens, then scientific proposition infered must be true. The negative justification allows for things that aren’t possibly not true & hold to statements that are only true, while positive justification allows for things that are only possibly true & hold to some statements that aren’t only true.

So Evidentialist like David Hume, or C.K. Clifford, would be justified in holding some scientific propositions that aren’t only true. Evidentialist would hold to both true statements and false statements. While the Non-Evidentialist, which follows Falsifiability or negative justification, would hold only to true statements. The Non-evidentialist wouldn’t be justified in asserting a scientific statement, even though conclusions drawn from it must be true.

Thus, Evidentialism is fallacious because the assertions that it concludes to be justified in holding, based on the evidence, aren’t truth-preserving. It’s conclusions of justified scientific propositions aren’t based on the evidence or derived by positive support it receives from the evidence. However, it is completely opposite with Non-Evidentialism of Falsification, or it isn’t fallacious.

The Evidentialist would be acting irrationally by seeking their justification, while the Falsifiabilist, which is necessarily a Non-Evidentialist, would be acting rationally by not seeking the Evidentialist justification.

Huxley’s assertion, in his examplar of Evidentialism, mentions that “merciless to fallacy in logic.” But we later find out that Evidentialism isn’t “merciless to fallacy in logic”, but is founded on a fallacy in logic itself. David Hume recognized this, even though exemplar of Evidentialism. Instead, he went about acting irrationally by seeking a (positive) justification of proposition by evidence & the rest of Evidentialism followed, like C.K. Clifford and Thomas Huxley. They would all go about by searching for evidence that proposition is true and end right back in the same place.

Finding Evidence

So we finally come full circle with the fallacy of Evidentialism, and find the source of the Evidentialist fallacy.

Advertisements

Posted in Philosophy, Science | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

The Logic of Discussions

Posted by allzermalmer on June 7, 2013

This blog will be based on a logical system developed by Polish logician Stanislaw Jakowski. It was published in the journal Studia Logica: An International Journal for Symbolic Logic, T. 24 (1969), pp. 143-1960

Implication (–> or C), Conjunction (& or K), Disjunction (v or A), Equivalence (<–> or E), Negation (~ or N, Possibility (<> or M), Necessity ([] or L),  and Variables (P or p, Q or q, R or r).

P = <>P or p = Mp
<>P = ~[]~P or Mp = NLNp

Discussive Implication (D): P–>Q = <>P–>Q or Dpq = CMpq
Discussive Equivalence (T): P<–>Q = (<>P–>Q) & (<>Q–><>P) or Tpq = KCMpqCMqMp

D1: P–>P = Dpp
D2: (P<–>Q) <–> (Q<–>P) = TTpqTqp
D3: (P–>Q) –> ((Q–>P)–>(P<–>Q)) = DDpqDDqpTpq
D4: ~(P&~P) = NKpNp [Law of Contradiction]
D5: (P&~P) –>Q = DKpNpq [Conjunction Law Overfilling]
D6: (P&Q) –>P = DKpqp
D7: P –> (P&Q) = DpKpq
D8: (P&Q) <–> (Q&P) = TKpqKqp
D9: (P&(Q&R)) <–> ((P&Q)&R) = TKpKqrKKpqr
D10: (P–>(Q–>R)) –> ((P&Q)–>R) = DDpDqrDKpqr [law importation]
D11: ((P–>Q)&(P–>R)) <–> (P–>(Q&R)) = TKDpqDprDpKqr
D12: ((P–>R)&(Q–>R)) <–> ((PvQ)–>R) = TKDprDqrDApqr
D13: P <–> ~~P = TpNNp
D14: (~P–>P) –> P = DDNppp
D15: (P–>~P) –>~P = DDpNpNp
D16: (P<–>~P) –> P = DTpNpp
D17: (P<–>~P) –>~P = DTpNpNp
D18: ((P–>Q)&~Q) –>~P = DKDpqNqNp

D19: ((P–>)&(P–>~Q)) –>~P = DKDpqDpNqNp
D20:  ((~P–>Q)&(~P–>~Q)) –> P = DKDNpqDNpNqp
D21:  (P–>(Q&~Q)) –>~P = DDpKqNqNp
D22:  (~P–>(Q&~Q)) –> P = DDNpKqNqp

D23: ~(P<–>~P) = NTpNp
D24: ~(P–>Q) –> P = DNDpqp
D25: ~(P–>Q) –> ~Q = DNDpqNq
D26: P–> (~Q–>~(P–>Q)) = DpDNqNDpq

A formulation of Aristotle’s Principle of Contradiction would be: “Two contradictory sentences are not both true in the same language” or “Two contradictory sentences are not both true, if the words occurring in those sentences have the same meanings”.

In Two Valued Logic, there is a Theorem known as the Law of Overfilling, or Implicational Law of Overfilling, or Dun Scotus Law, or L2 Theorem 1.

L2 Theorem 1: P—> (~P—>Q)

If an assertion implies its contradiction, then that assertion implies any and all statements.

“A deductive system…is called inconsistent, if its theses include two such which contradict one another, that is such that one is the negation of the other, e.g., (P) and (~ P) . If any inconsistent system is based on a two valued logic, then by the implicational law of overfilling one can obtain in it as a thesis any formula P which is meaningful in that system. It suffices…to apply the rule of modus ponens twice[ to P—> (~P—>Q)]. A system in which any meaningful formula is a thesis shall be termed overfilled.”

  1. Assume: P—> (~P—>Q)
  2. Modus Ponens: P
  3. Conclusion: ~P—>Q
  4. Modus Ponens: ~P
  5. Conclusion: Q

“[T]he problem of the logic of inconsistent systems is formulated here in the following manner: the task is to find a system of the sentential calculus which: (1) when applied to the inconsistent systems would not always entail overfilling, (2) would be rich enough to enable practical inference, (3) would have an intuitive justification. “

This means that Discussive Logic does not have the theorem of implicational law of overfilling. The theorem is not always true in Discussive Logic. Discussive Logic does not entail that a contradiction does not always entail any and all assertions. So Discussive Logic rejects the truth of the theorem P—> (~P—> Q), which is a theorem is two value logic, i.e. been proven true under conditions of two value logic.

Kolmogorov’s System

Here are Four axioms from Hilbert’s positive logic, and one axiom introduced by Kolmogorov.

K 1: P—> (Q—>P)
K 2: (P—> (P—>Q))—> (P—>Q)
K 3: (P—> (Q—>R))—> ((Q—> (P—>R))
K 4: (Q—>R)—> ((P—>Q)—> (P—>R))
K 5: (P—>Q)—> ((P—>~Q)—>~P)

Under these axioms, Two valued logic cannot be proved. Implicational Law of Overfilling not being provable in Discussive Logic implies that Two Valued logic cannot be proved in Discussive Logic. This entails that there might be overlap between Two Valued logic and Discussive Logic, but there is not a total overlap between Two Valued logic and Discussive Logic. Not all theorems of Two Valued logic will be theorems in Discussive logic (like law of overfilling), but some theorems of two valued logic are theorems in Discursive logic.

From these Axioms and the rule of inference known as Modus Ponens, there is one theorem which has some similarities to implicational law of overfilling.

K 9: P—> (~P—>~Q)

It is not the only Theorem that can be derived from the Axioms and Modus Ponens. Here is a list of some Theorems that can be derived by using  Modus Ponens on the Axioms.

K 6 : (P—>Q)—> ((Q—R)—> (P—>R))
K 7:  ((Q—>P)—>R)—> (P—>R)
K 8:  P—> ((Q—>~P)—> ~Q)
K 9:  P—> (~P—>~Q)

Proof of how K 6 – K 9 are derived are ignored for here. All that needs to be known is that K3 and applications of Modus Ponens is equal to If K4 then K 6. K 6 and applications of Modus Ponens is equal to If K 1 then K 7. K 7 and applications of Modus Ponens is equal to If K 5 then K 8. K 6 and applications of Modus Ponens is equal to If K 8 then K 7 implies K 9.

This forms Kolmogorov’s System.

Lewis System of Strict Implication

Strict Implication is defined by modal operator of “it is possible that P” or <>P. So “P strictly implies Q” is equal to “It is not possible that both P and not Q”. But taking the conditional statement —> as strict implication means that the implicational law of overfilling is not a theorem.

Material Implication as a conditional is usually defined by the logical relationship of a conjunction.

Material Conditional: P—>Q = ~(P & ~Q)
“P implies Q” is equal to “Not both P and not Q”
Strict Conditional: P—» Q = ~<>(P & ~Q)
“P strictly implies Q” is equal to “It is not possible that both P and not Q”

Under Strict Implication, Law of Overfilling is not a theorem. Under Material Implication, Law of Overfilling is a theorem. And set of theorems which include only strict implication and not material implication is very limited.

Many Valued Logics

Based on a certain Three Value logical matrix, which shall be ignored, the Law of Overfilling is not a theorem. But there is another theorem in the Three Value logic which has some similarity to the Law of Overfilling.

L 1: P—> (~P—> (~~P—> Q))

Based on the theorem (stated above) of this specific three valued logic, it holds the overfilling of a system when it includes the inconsistent thesis of P, ~P, and ~~P. And the implicational theses of two valued calculus remains valued in the three valued logic. But the three valued logic also holds other theorems that are not in two valued logic, which are as follows.

L 2: P—> ~~P
L 3: ~~~P—> P
L 4: ~P—> ~(P—> P)

So in the three valued logic, which is ignoring the logical matrix of this three valued logic, we cannot obtain the Law of Overfilling. The Law of Overfilling will thus be a theorem in two valued logic but not a theorem in this three valued logic. But the three valued logic has a theorem that is similar to the Law of Overfilling but is not equivalent to the Law of Overfilling. This three value logic also has some theorems that are not theorems in two valued logic. Besides the Law of Overfilling not being a theorem in the three valued logic, the rest of implicational theorems in two valued logic are theorems in the three valued logic.

Calculus of Modal Sentences (M2)

The Modal Sentences of (M2) will assume that modal assertions are either true or false, or simply that the Modal sentences are two valued. But now suppose that there are factors that do not allow for the assertion P to be determined strictly to be either true or false.

For example: Suppose that you are flipping a coin. Suppose that you make the assertion that “During the game heads will turn up more times than tails will” and this is represented by the variable of P. There will be certain sequences that turn up so that P is true, and there will be certain sequences that turn up so that P is false. So P may take on both true and false.

“It is necessary that P” = []P

Taking the example above, we can say that “P occurs for all possible events”.

Q is any formula that includes (1) operators —>, V, &, <—>, ~ and [], (2) and variables p,q,r,s..etc. R is any formula that is already a Q formula and is replacements of variables in Q by interpreting them as P(x), Q(x), R(x), S(x)…etc, and interpreting [] by universal quantifiers “for every x”. Every Q satisfies (1) and (2) and every R satisfies (1) and (2), and additionally satisfying (3).

The operators are implication, disjunction, conjunction, equivalence, and necessity. These are applied to variables or connects variables. When those conditions are met, then it is a formula of Q. The replacement of the variables and [] are formula of R. (1) and (2) can be recognized as P–>Q, or []P—>Q, or []P—>P. We can replace those variables to formulas in R: P(x) —> Q(x), or For every x, P(x) —> Q(x), or For every x, P(x) —> P(x).

“It is possible that P” = <>P

<>P can be taken as “it is not necessary that not P”.

<>P = ~[]~P

Like we could change []P into “for every x”, we may also change <>P into “for some x”.

Definition of Discussive Implication and Discussive Equivalence

As is known, even sets of those inscriptions which have no intuitive meaning at all can be turned into a formalized deductive system. In spite of this theoretical possibility, logical researches so far have been taking into consideration such deductive systems which are symbolic interpretations of consistent theories, so that theses in each such system are theorems in a theory formulated in a single symbolic language free from terms whose meanings are vague.

But suppose that theses which do not satisfy those conditions are included into a deductive system. It suffices, for instance, to deduce consequences from several hypotheses that are inconsistent with one another in order to change the nature of the theses, which thus shall no longer reflect a uniform opinion. The same happens if the theses advanced by several participants in a discourse are combined into a single system, or if one person’s opinions are so pooled into one system although that person is not sure whether the terms occurring in his various theses are not slightly differentiated in their meanings. Let such a system which cannot be said to include theses that express opinions in agreement with one another, be termed a discussive system. (Italics is authors and Bold is mine)

Each the theses in discussive logic are preceded so that each thesis has the speaker has the reservation such that each assertion means  “in accordance with the opinion of one of the participants in the discussion” or “for a certain admissible meaning of the terms used”. So when you add an assertion to a discussive system, that assertion will have a different intuitive meaning. Discussive assertions have the implicit condition of the equivalence to <>P.

King Solomon having to decide between two harlots claiming to be the mother of a baby. Woman A claimed to be the mother of the baby and not the mother of the dead baby, and Woman B claimed to be the mother of the baby and not the mother of the dead baby. King Solomon being the arbitrator, under Discussive assertions, would have taken each Woman’s claim as having the prefix of possibility, or “it is possible that Woman A is the mother” or “it is possible that Woman A is not the mother”.

Discussive logic is not based on ordinary two valued logic. Discussive logic would not hold Modus Ponens in all cases if it did.

Take the statement P—>Q is asserted in a discussion. It would be understood to mean “It is possible that If P, then Q”. P is asserted in the same discussion. It would be understood to mean “It is possible that P”. Q would not follow from the two assertions in the discussion. For by Q would not follow in the discussion because Q stands for “It is possible that Q”. So it is invalid to infer from “It is possible that if P, then Q” and “It is possible P” that “It is possible that Q”. But people might assume the normal two value logic in which Modus Ponens holds in all cases.

For Discussive Logic, Discussive Implication is defined as such:

Definition of Discussive Implication: P—>Q = <>P—>Q

There is a theorem of M2 based on Discussive Implication.

M2 Theorem 1: <>(<>P—>Q) —> (<>P—><>Q)

So Modus Ponens may be used in Discussrive Logic when we understand that from (<>P—><>Q) and <>P, we may infer that <>Q by Modus Ponens.

For Discussive Logic, Discussive Equivalence is defined as such:

Definition of Discussive Equivalence: P <—> Q = (<>P—>Q) & (<>Q—><>P)

There is a theorem of M2 based on Discussive Implication.

M2 Theorem 2: <> (P<—>Q) —> (<>P—> <>Q)
M2 Theorem 3: <> (P <—> Q) —> (<>Q —> <>P)

Two valued Discussive System of Sentential Calculus: D2

The system of D2 (i.e. Discussive Logic) of two valued discussive sentential calculus is marked by the formula T, and are marked by the following properties: (1) Sentential variables and functors of Discussive Implication, Discussive Equivalence, Disjunction, Conjunction, and Negation. (2)  precedening T with the symbol of <> yields a theorem in two valued sentential calculus of modal sentences M2.

As the author says, “The system defined in this way is discussive, i.e., its theses are provided with discussive assertion which implicitly includes the functor <>/ This is an essential fact, since even such a simple law as P—>P, on replacement of —> with —-> (i.e. discussive implication leads) to a new theorem.”

D2 Theorem 1: P—>P

D2 is not a theorem in M2, specifically because M2 did not have discussive implication. But in order to make D2 theorem 1 into a theorem in M2, you have to add <> to D2 theorem 1 like this:

M2 Theorem 4: <>(P—>P)

System M2 is decidable, so the discussive sentential calculus D2, defined by an interpretation in M2 is decidable too.

Methodological Theorem 1: “Every thesis T in two valued sentential calculus which does not include constant symbols of —>, <—>, V, becomes a thesis in T(d) in discusive sentential calculus D2 when in T the implication symbols is replaced by the [discurssive implication], and the equivalence symbols are replaced by [discusrive equivalence]. “

“Proof. Consider a formula T(d) constructed so as the theorem to be proved describes. It is to be demonstrated that <>T(d) is a thesis in M2. It is claimed that <>T(d) is equivalent to some other formulae; the equivalences will be proved gradually.”

Here are a couple more M2 Theorems.

M2 Theorem 5: <>(P—>Q) <—> (<>P—><>Q)
M2 Theorem 6: <>(P <—> Q) <—> (<>P <—> <>Q)
M2 Theorem 7: <>(P v Q) <—> (<>P v <>Q)

These theorems are about the distribution of <> over the variables. For example, M2 Theorem 5 distributes <> over implication, and M2 Theorem 6 distributes <> over equivalence, and M2 Theorem 7 distributes over Disjunction. M2 Theorem 5 and M2 Theorem 6 have Discussive Implication and Discussive Implication as the antecedents, respectively.

This shows how we can replace Discurssive Implication with regular implication and how we can replace Discurssive Equivalence with regular equivalence. So from <>(P—>Q), which contains Discurssive Implication, can be replaced with regular implication as <>P—><>Q. The form <>(P<—>Q), which contains Discurssive Equivalence, can be replaced with regular implication as <>P,—><>Q. Discurssive assertion like <>(PvQ) has the equivalence in M2, or Modal Logic, as <>P v <>Q.

The procedure yields the formula W, which is equivalent to <>T(d) and includes (1) only the symbols —>, <—>, and V, (2) variables, and (3) symbols <> in certain special positions, like each variable is directly preceded by <> and each symbol <> directly precedes a variable. Forming T(d) from the thesis T belonging to two value logic is possibly be seen that W can be obtained from T by preceding each variable by <>. For example, precede the variable P by <>P or precede the variable Q by <>Q. This procedure would yield the following theorems in M2.

(a) W is a result of the substitution in T
(b) <>T(d) is equivalent to W.
Hence T(d) is a thesis of D2

The theorems just listed above, immediately yields these theorems in Discussive Logic:

D2 Theorem 2: (P<—>Q) <—> (Q<—>P)
D2 Theorem 3: (P—>Q) —> ((Q—>P) —> (P<—>Q))

Each of the connectives in the D2 theorem just listed are Discurssive Equivalence for D2 Theorem 2 and Discurssive Implication for D2 Theorem 3.

Methodological Theorem 2: If T is a thesis in the two valued sentential calculus and includes variables and at the most the functors V, &, ~, then (1) T and (2) ~T —> q, are thesis in D2. The implication of (2) is Discurssive Implication.

Proof: The symbols V, &, and ~ retain respective meanings in M2 and D2, and that (3) []T is a thesis in M2. The symbols V, &, and ~ retain respective meanings in M2 and D2 and that (3) []T is a thesis in M2. Hence (1) by M2 Theorem 8 []P—><>P and (2) by M2 Theorem 9 []P—><>(<>~P—>Q).

M2 Theorem 8: []P—><>P
M2 Theorem 9: []P—> <>(<>~P—>Q)

We may apply the Methodological Theorem 2 to the Two Valued Logic Theorem of ~(Pv~P), i.e. Aristotle’s Principle of Contradiction.

L2 Theorem 3: ~(P&~P)

“Methodological Theorem 2 and Law of Contradiction in Two valued logic yieleds – in view of the law of double negation- the following theorem of Discussive logic.”

D2 Theorem 4: ~(P&~P) [Law of Contradiction]
D2 Theorem 5: (P&~P) —> Q [Conjunctional Law of Overfilling]

What these two theorems are basically stating is this: Suppose that we have an individual in a discussion, and this individual holds to the Discussive assertion of (P&~P), this individual would hold inconsistent opinions. And in Discussive logic, when an individual holds to inconsistent opinion, the persons opinion implies any and all discussive assertions. This basically forbids an individual from holding to discussive assertions that are contradictory to one another by D2 Theorem 4, and if we do hold to contradictory discussive assertions then any discussive assertion follows from the conjunction of contradictory discussive assertions. This is similar to Law of Overfilling in two value logic but not exactly the same.

We also have the following theorems in Discussive Logic.

D2 Theorem 6: (P&Q) —> P
D2 Theorem 7: P—> (P&P)
D2 Theorem 8: (P&Q) <—> (Q&P)
D2 Theorem 9: (P& (Q&R)) <—> ((P&Q) & R)
D2 Theorem 10: (P—> (Q—>R)) —> ((P&Q) —>R) [Law of Importation]
D2 Theorem 11:((P–>Q) & (P—>R)) <—> (P—>(Q & R))
D2 Theorem 12: ((P—>R) & (Q—>R)) <—> ((PvQ) —> R)
D2 Theorem 13:P <—> ~~P
D2 Theorem 14:(~P—>P) —>P
D2 Theorem 15:(P—>~P)>~P
D2 Theorem 16:(P<—>~P) —>P
D2 Theorem 17: (P<—>~P) —>~P
D2 Theorem 18: ((P—>Q) & ~Q) —> ~P

There are laws of inference by reductio ad absurdum that remain valid in Discurssive Logic.

D2 Theorem 19:((P—>Q) & (P—>~Q)) —> ~P
D2 Theorem 20:((~P—>Q) & (~P—>~Q)) > P
D2 Theorem 21:(P> (Q&~Q)) —> ~P
D2 Theorem 22: (~P —> (Q&~Q)) —>P

Here are some other theorems of Discurssive Logic.

D2 Theorem 23:~(P <—> ~P)
D2 Theorem 24:~(P—>Q) —>P
D2 Theorem 25: ~(P—>Q) —>~Q
D2 Theorem 26: P —> (~Q—>~(P—>Q))

Posted in Philosophy | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Logically Valid Arguments

Posted by allzermalmer on April 8, 2013

Categorically Valid Syllogisms

M stands for Middle Term; P stands for Major Term; S stands for Minor Term

Figure 1

(1) Barabara:If all M are P and all S are M, then all S are P
P. All M are P
P. All S are M
C. All S are P

(2) Celarent: If no M are P and all S are M, then no S are P
P. No M are P
P. All S are M
C. No S are P

(3) Darii: If all M are P and some S are M, then some S are P
P. All M are P
P. Some S are M
C. Some S are P

(4) Ferio: If no M are P and some S are M, then some S are not P
P. No M are P
P. Some S are M
C. Some S are not P

Figure 2

(1) Camestres: If all P are M and no S are M, then no S are P
P. All P are M
P. No S are M
C. No S are P

(2) Cesare: If no P are M and all S are M then no S are P
P. No P are M
P. All S are M
C. No S are P

(3) Baroko: If all P are M and some S are not M, then some S are not P
P. All P are M
P. Some S are not M
C. Some S are not P

(4) Festino: If no P are M and some S are M, then some S are not P
P. No P are M
P. Some S are M
C. Some S are not P

Figure 3

(1) Datisi: If all M are P and some M are S, then some S are P
P. All M are P
P. Some M are S
C. Some S are P

(2) Disamis: If some M are P and all M are S, then some S are P
P. Some M are P
P. Some M are S
C. Some S are P

(3) Ferison: if no M are P and some M are S, then some S are not P
P. No M are P
P. Some M are S
C. Some S are not P

(4) Bokardo: If some M are not P and all M are S, then some S are not P
P. Some M are not P
P. All M are S
C. Some S are not P

Figure 4

(1) Camenes: If all P are M and no M are S, then no S are P
P. All P are M
P. No M are S
C. No S are P

(2) Dimaris: If some P are M and all M are S, then Some S are P
P. Some P are M
P. All M are S
C. Some S are P

(3) Fresison: If no P are M and some M are S, then some S are not P
P. No P are M
P. Some M are S
C. Some S are not P

Propositional Logic

Modus Ponens: Given the conditional claim that the consequent is true if the antecedent is true, and given that the antecedent is true, we can infer the consequent.
P. If S then P
P. S
C. Q

Modus Tollens: Given the conditional claim that the consequent is true if the antecedent is true, and given that the consequent is false, we can infer that the antecedent is also false.
P. If S then P
P. Not P
C. Not S

Hypothetical Syllogism: Given two conditional such that the antecedent of the second is the consequent of the first, we can infer a conditional such that its antecedent of the first premise and its consequent is the same as the consequent of the second premise.
P. If S then M
P. If M then P
C. If S then P

Constructive Dilemma: Given two conditionals, and given the disjunction of their antecedents, we can infer the disjunction of their consequents.
P. If S then P                 P. If S then P
P. If M then N               P. If M then P
P. S or M                        P. S or M
C. P or N                        C. P or P

Destructive Dilemma: Given two conditionals, and given the disjunction of the negation of their consequents, we can infer the disjunction of the negation of their antecedents.
P. If S then P                P. If S then P
P. If M then N              P. If S then N
P. Not P or Not N        P. Not P or Not N
C. No S or Not M        C. Not S or Not S

Biconditional Argument: Given a biconditional and given the truth value of one side is known, we can infer that the other side has exactly the same truth value.
P. S<–>P    P. S<–>P   P. S<–>P   P. S<–>P
P. S               P. P              P. Not S      P. Not P
C. P              C. S               C. Not P     C. Not S

Disjunctive Addition: Given that a statement is true, we can infer that a disjunct comprising it and any other statement is true, because only one disjunct needs to be true for the disjunctive compound to be true.
P. S
C. S or P

Disjunctive Syllogism: Because at least one disjunct must be true, by knowing one is false we can infer tat the other is true.
P. S or P   P. S or P
P. Not P   P. Not S
C. S          C. P

Simplification: Because both components of a conjunctive argument are true, it is permissible to infer that either of its conjuncts is true.
P. S & P   P. S & P
C. S          C. P

Adjunction: Because both premises are presumed true, we can infer their conjunction.
P. S
P. P
C. S & P

Conjunctive Argument: Because the first premise says that at least one of the conjuncts is false and the second premise identifies a true conjunct, we can infer that the other conjunct is false.
P. ~(S & P)   P. ~(S & P)
P. S                P. P
C. Not P        C. Not S

 

Posted in Philosophy | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »